
Active Request Monitor
Local Application
Tue, Mar 7, 2006

The local application REQM is used to monitor active data requests, including those of both 
Classic and Acnet protocols. The objective is to determine whether replies to a requesting 
node are falling on deaf ears, say, because the node “goes away.” If REQM reaches the 
conclusion that the reply data is no longer needed, it cancels the request. This note describes 
the functionality of REQM and how it works.

Active request lists
Local application REQM monitors active data requests by examining the linked list of 

active request blocks maintained by the underlying system code. At 1 Hz, it builds two lists 
of such requests within its allocated static memory block. One that is located at offset 0x0080 
has records (maximum 32) of the following format:

Field Size Meaning
tNode 2 requesting node#
nReq 2 #active requests
tryCnt 1 retry count
ageCnt 1 time-out counter
mBType 2 request block type#

As indicated, this list keeps track of all active requesting nodes and how many active 
requests there are from each. It includes the fields for timing out queries (described later) that 
are designed to determine whether the requester is still active. The request block type# 
allows distinguishing Classic and Acnet protocols.

The above reference to “requesting nodes” is slightly incomplete. A node# is nearly always a 
16-bit pseudo node number that carries a reference to an IPARP table entry that includes both 
the IP address of the requesting node and the UDP source port# that is used to target replies. 
Such a source port can have many active requests, each distinguished by a request id that 
was included in the request message header and is returned in the corresponding reply 
message headers. (The request id for Classic protocol is often called a “list number.”)

The other list of requests maintained by REQM is at offset 0x0800 in its static memory block. 
Its records (maximum 128) are also 8 bytes in size, as follows:

Field Size Meaning
fNode 2 requesting node# (friendly format)
nBytes 2 #bytes returned in each reply message
nDev 2 #devices requested
ftd 2 frequency-time-descriptor for Acnet RETDAT requests

There is one record for each active request encountered in the linked list of active requests. 
This list is maintained as a diagnostic that is not strictly needed by REQM to perform its 
monitoring function. It can be most easily listed by using the “Print Memory” page 
application PMEM, specifying a target “address” of “REQM+800”. The meaning of this format 
for PMEM is the contents of the REQM static memory block at offset 0x800. (It uses listype #96 to 
acquire this data. For more details on this, see the note, LA Static Memory Access.)

The meaning of a “friendly” node# that is shown in place of the usual pseudo node# is that 
the native node# is used when possible, along with an indication (in the high nibble) of 



whether the protocol is Acnet or Classic. Examples for node0509 are 0xC509 for the Classic 
protocol and 0xA509, or 0xA9B6, for the Acnet protocol. (Its native node# is 0x0509, and its 
Acnet node# is 0x09B6, for trunk 9, node 182.) An example of an Acnet console client cns07 
might be 0xA907. The logic affording this translation of pseudo node# to friendly node# is 
included in the system code, accessible via listype #95. It relies on the UDP source port 
matching the standard 6800 for Classic and 6801 for Acnet. (For other ports, a pseudo node# 
is used; there is no friendly node equivalent.) The REQM code builds a local (Classic) request 
using this listype when it needs the translation and calls for immediate results, which works 
because it is a local request. For more details on this, see the note, Pseudo Node Translation.

The nBytes, nDev, and ftd fields are taken from the request message header in the case of 
Acnet RETDAT requests. For other Acnet requests, the nBytes field is set to the value 0xB000 
+ blk, where blk is the request block type#, and the other two fields are set to zero. (The 
main “other” Acnet protocol is the FTPMAN protocol, which will be shown as 0xB011.) 

For Classic protocol requests, the nBytes field represents the total number of data bytes in 
the replies; the nDev field is the number of longwords in the internal pointers array, which is 
normally the number of listypes times the number of idents; and the ftp field is the period in 
15 Hz cycles, for periodic requests, or (0x8000 + evtNum) for clock event-based requests.

Monitoring logic
In order to monitor whether a requesting node is alive, the local NETFRAME data stream 

records are monitored. This data stream is used to record each datagram received by, or 
transmitted from, the local node. Specifically, this allows REQM to monitor whether any 
messages are received by the requesting node that would confirm its continued existence. 
Considering each requesting node separately, if a period of time, normally set for 28 seconds, 
passes without hearing anything from that node, REQM generates a query designed to elicit a 
response from that node. If a second period of time passes, and there still has not been any 
datagram seen from that node, another attempt is made. Only after 3 attempts, and 4 periods 
of time normally amounting to nearly 2 minutes, will REQM determine that the requester is no 
longer alive. And it will therefore cancel all active requests for which replies target that node. 
All this monitoring logic is desirable since both Classic and Acnet are based on the UDP 
(connectionless) transport protocols. A single request in either protocol can prompt multiple 
replies without end until the request is canceled.

Querying a requesting node
Consider the Acnet protocols first. To prompt a response from an Acnet client, an 

Acnet request message is sent to the client node specifying a null destination task name 
(0x00000000). This should elicit an Acnet error status message that means “no such task.” 
All that matters is that REQM will soon notice that the requesting node talked to the local node. 
Note that the query only checks for the Acnet task being alive, not actually for the client task. 
But it confirms that there still is a valid network connection to Acnet at that node.

As for Classic protocols, one could imagine sending a canned request message to elicit a reply 
from a requesting node. But Classic clients are not required to support interpretation of 
Classic requests. They often are only designed to send a Classic request and interpret Classic 
replies. So a different method is used, that of sending a reply message that carries an invalid 
message id, specifically 0x7FF. (Classic message ids are 11 bits, so this is the maximum value, 
one that, in order for REQM to work properly, should not be used by a Classic client.) The 
response by a Classic client to any reply for which the message id is unknown is to send a 
cancel message to announce that no more such replies are desired. This scheme allows REQM 
to verify the continued health of a Classic client requester.

Active Request Monitor p. 2



Query details
Querying a node via an Acnet request is easy. The Network Layer routines, including 

NetQueue and NetSend, provide that support.

Classic protocol support does not easily lend itself to emitting a reply message, so REQM 
makes up a one-shot Classic request message on behalf of the requesting node, using list 
number 0x7FF, passing it to the message queue on which the Classic task awaits. In the 
normal course of events, then, the Classic task discovers this message as one received from 
the requesting node. It interprets the request and quickly emits the reply to that node. This 
reply should then provoke that requesting node to return a cancel message.

When query fails
If a Classic or Acnet client fails to return a reply, the typical symptom observed is that 

an active request remains active for less than 2 minutes—again assuming the usual 28 second 
period parameter is being used for REQM in the target node. If a user reports this 
characteristic, one should look at the first list maintained by REQM at offset 0x0080. (An easy 
way to do this is via the Memory Dump page application MDMP, after obtaining the base 
address of the REQM static memory block from page application LAPP, usually attached to 
Page E on a “little console.”) A requesting node record will be seen to advance the ageCnt 
field by 1 each second, until 28 is reached, then tryCnt will advance from 0 to 1, and the 
ageCnt is reset to commence counting up again. Under normal conditions, the tryCnt is 
promptly reset again. But under under failure conditions, the tryCnt is not reset, and after 
another 28 seconds, the tryCnt will advance to 2, and so on. Eventually, after the tryCnt 
reaches 3 and remains there for 28 seconds, the entry will disappear, as the request has been 
internally canceled.

When REQM decides to cancel all requests from a requesting node, it calls the system routine 
CanChain to do it. That routine cancels all Acnet and Classic requests from a given node. 
Again, note that “node” here may merely be one UDP source port of a (real) node.

Miscellany
At this writing, the IRM version of REQM has been in use for about 10 years. It could be 

simplified somewhat, as we no longer require support for token ring nor for raw ethernet. All 
data request networking is now IP-based on ethernet.

Because this request monitor functionality is provided by a local application, it is possible to 
turn it off by disabling REQM. But it is normally installed and enabled in every front end. As a 
diagnostic, the list of active requests maintained at offset 0x0800 in the REQM static memory 
block can often be quite useful.

The monitoring is done by REQM in a front end node to assure that a requesting node is still 
alive. From the opposite point-of-view, one can ask about the client side monitoring the 
continued health of the replying node. The logic that does this is part of the system code, in 
which a “server node,” acting on behalf of a requesting node client, determines that a 
contributing node for a given request is not returning any data replies. After the server 
node’s patience is exhausted, it resends the request to the contributing node, hoping to 
remind it of the request in which its participation is expected. (Perhaps it is rebooting.) It will 
continue to do this every 2 seconds as long as the request has not been canceled by the 
requesting node. Details of this logic are covered in a number of other notes.

Active Request Monitor p. 3


